HW one, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) Let (S.*) be a group. Fix $a, b \in S$. Show that if $a * b=a * c$ for some $c \in S$, then $b=c$. Also show that if $b * a=c * a$, then $b=c$.
(ii) Let $(S, *)$ be a group. Fix $a, b \in S$. Show that the equation $a * s=b$ has unique solution and find x. Note the $x * a=b$ has also unique solution, but only show it for $a * x=b$.
(iii) Let $(S, *)$ be a group and assume $|a|=12$ for some $a \in S$. For what values of $m(1 \leq m \leq 12)$ do we have $\left|a^{m i}\right|=12$? For what values of $m(1 \leq m \leq 12)$ do we have $\left|a^{m}\right|=4^{\prime \prime}$?
(iv) Let $(S, *)$ be a group and assume $|a|=6$ for some $a \in S$. Let $F=\left\{\varepsilon, a, a^{2}, \ldots, a^{5}\right\}$. Construct the Coley's table of $(F, *)$. By staring at the table you should observe that F is a group and hence a subgroup of S.
(v) Convince me that if n is not prime, then $\left(Z_{n}^{*}, X_{n}\right)$ is never a group.
(vi) Convince me that if n is prime, then $\left(Z_{n}^{*}, X_{n}\right)$ is a group [hint: recall Fermat little Theorem. if p is prime and $p \nmid m$ (meaning p is not a factor of m), then $m^{(p-1)}(\bmod p)=1$.]
(vii) Let $F=\{3,6,9,12\}$, and $*=$ multiplication module 15 . Convince ne that $(F, *)$ is a group by constructing the Caley's table. What is e in F ? Find the inverse of each element of F. INTERESTING!!!!
(viii) Consider $\left(D_{5}, 0\right)$. We know that D_{5} has 10 elements, Let s_{1} be one of the reflections (we know that D_{5} has 5 reflections). Let $a=R_{72}$. Convince me that $\left\{a o s_{1}, a^{2} o s_{1} \cdot a^{3} o s_{1}, a^{4} o s_{1}, a^{5} \sigma s_{1}\right\}=$ the set of all reflections in D_{5} [Hint: may be you need to use (i)]

Submit your solution on Tuesday September 20, 2016 at 2pm. Faculty information

Question 1 i) Let (S, x) be a group. Fix $a, b \in S$. Show that if $a \times b=a$ for some $c \in S$, then $b=c$. Also show that if $b * a=c \times a$ then $b=c$
Proof: If $a * b=a * c$. Then,

$$
\begin{aligned}
& b=e \pm b=\left(a^{-1} * a\right) b \\
& =a^{-1}(a \times b)=a^{-1}(a \times c) \\
& =a^{-1}\left(a x\left(a^{-1} * a\right) c=e \times c=c\right.
\end{aligned}
$$

Hence $b=c$
Proof: If $b * a=c * a$. Then

$$
\begin{aligned}
b & =b * e=b\left(a * a^{-1}\right) \\
& =(b * a) a^{-1}=(c * a) a^{-1} \\
& =c\left(a * a^{-1}\right)=c * e=c
\end{aligned}
$$

Hence $b=c$
ii) Let (S, x) be a group. Fix $a, b \in S$. Show that the equation $a * x$ has a unique solution. Find x.
Proof:

$$
\begin{aligned}
& a * x=b \\
& x=e * x \\
& =\left(a^{-1} * a\right) x \\
& =a^{-1}(a x)=a^{-1} * b
\end{aligned}
$$

Hence $x=a^{-1} * b$
Proof of uniqueness:
Suppose m is also a solution to $a * x=b$. Then,

$$
\begin{gathered}
a * m=b=a * x \\
m=x
\end{gathered}
$$

Hence the equation $a * x=b$ has a unique solution
iii) Let. $(S, *)$.be a group and assume $a t=12$ for some $a \in S$.

$$
\begin{array}{ll}
\left|a^{1}\right|=\frac{12}{\operatorname{gcd}(1,12)}=12 & \left|a^{9}\right|: \frac{12}{\operatorname{gcd}(1,12)}=12 \\
\left|a^{2}\right|=\frac{12}{\operatorname{gcd}(2,12)}=\frac{12}{2}=6 & \left|a^{8}\right|=\frac{12}{\operatorname{gcd}(8,12)}=\frac{12}{4}=3 \\
\left|a^{3}\right|=\frac{12}{\operatorname{gcd}(3,12)}=\frac{12}{3}=4 & \left|a^{9}\right|=\frac{12}{\operatorname{gcd}(9,12)}=\frac{12}{3}=4 \\
\left|a^{4}\right|=\frac{12}{\operatorname{gcd}(4,12)}=\frac{12}{4}=3 & \left|a^{10}\right|=\frac{12}{\operatorname{gcd}(10,12)}=\frac{12}{2}=6 \\
\left|a^{5}\right|=\frac{12}{\operatorname{gcd}(5,12)}=12 & \left|a^{4}\right|=\frac{12}{\operatorname{gcd}(11,12)}=12 \\
\left|a^{4}\right|=\frac{12}{\operatorname{gcd}(6,12)}=\frac{12}{6}=2 & \left|a^{12}\right|=\frac{12}{\operatorname{gcd}(12,12)}=\frac{1}{\operatorname{gcd}}=1
\end{array}
$$

For what values of $m(1 \leq m \leq 12)$ do we have $\left|a^{m}\right|=12$? $m=1, m=5, m=7, m=11$
Y// For what values of $m(1 \leq m \leq 12)$ do we have $\left|a^{m}\right|=4$? $m=3$ and $m=9$
iv Let $(S, *)$ be a group and assume $|a|=6$ for some a es. Let $F=\left\{e, a, a^{2}, \ldots a^{5}\right\}$. Construct the Caley's table of $(F, *)$.
Given $|a|=6$

$$
\begin{array}{ll}
\rightarrow|a|: n \Rightarrow a^{n}=e \\
|a|=6 \Rightarrow a^{6}=c
\end{array} \quad F=\left\{e, a, a^{2}, a^{2}, \ldots a^{5}\right\}
$$

Caley's Table of $(F, *)$

(v) Convince me that if n is not prime, then $\left(Z_{n}^{*}, X_{n}\right)$ is never a group.

$$
\begin{aligned}
& Z_{n}=\{0,1,2,3, \ldots n-1\} \\
& Z_{n}^{*}=\{1,2,3, \ldots n-1\}
\end{aligned}
$$

Suppose n is not prime, then
$n=p q$, where $1<p<n$ and
Here p in $q=0 \quad 1<q<n$
Since. $p q=0 .(\bmod n) \notin n$ and 0 is not in Zn^{*}
Hence $\left(Z_{n}^{*}, X_{n}\right)$ is never a group.
vi Convince me that if n is prime, then $\left(Z_{n}^{*}, X_{n}\right)$ is a gr.
$Z_{n}{ }^{n}=\{1,2,3,4, \ldots p-1\}$
$e=1$
$a^{p-1} \equiv 1(\bmod p)$

1) Closunc: Let $a, b \in Z_{n}^{*}$. Show $a_{n} b \in Z_{n}^{*}$. Suppose $a \cdot n b=0$. Then $n|a b \Rightarrow n| a$ or $n \mid b\left(\sin 6 \operatorname{li}^{n i s}\right.$ - prime) but $F a$ and $n t b$, because $1 \leq a, b \leq n-1$.
Thus $a_{n} b \neq 0$. Hence $a{ }_{n} b \in Z_{n}^{*}$ -
2) Invar; ret $a \in Z_{n}^{*}$, sincent we know $a^{n-1}(\bmod n)=1$. Thus $a \cdot a^{n-2}(\bmod (n))=1$. Hence

$$
a^{-1}=a^{n-2}(\bmod (n)) \in z_{n}^{\infty}
$$

vii Let $F=\{3,6,9,12\}$, and $*=$ multiplication module 15. Convi me that (F, \ldots) is a group by constructing the Caley's T_{c} What is ℓ in F ? Find the inverse of each element of F.

Given that $F=\{3,6,9,12\}$ and $*=$ operation $(a * b) \bmod 15$. remainder of $(a \times b) / 15$

$*$	3	6	9	12
3	9	3	12	6
6	3	6	9	12
9	12	9	6	3
12	6	12	3	9

- All elements in the table are the elements of F.
$* \rightarrow$ binary operator on F.
for any a, b, c in F it is clear $a *\left(b^{*} c\right)=(a * b) * c$ m identity $=e: 6$
inverse of 3 is 12
inverse of 6 is 9
inverse of 9 is 6
inverse of 12 is 3
viii Consider ($D_{s}, 0$). We know D_{s} has: 10 elements. Ley s_{1} be one of the reflections. Let $a=R_{72}$. Convince me that $\left\{a \cdot s_{1}, a^{2} \cdot s_{1}, a^{3} \cdot s_{i}, a_{4}^{4} \cdot s_{1}, a_{0 .} \cdot s_{1}\right\}$. the set of all reflections in D_{s}.

If r is a rotation R_{0} and s is any reflection then D_{s} can br written as $\left\{1, x, r^{2}, r^{3}, r^{4}, a: s_{1}, a^{2} s_{1}, d^{3} \cdot s_{i}, a^{4} \cdot s_{1} ; a_{0}^{s} s_{1}\right\}$

$$
\begin{aligned}
& a=R_{72}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 5 & 5
\end{array}\right)-\left(\begin{array}{lll}
1 & 3 & 4 \\
5
\end{array}\right) \\
& a^{2}+R_{144} \cdot\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 1 & 2
\end{array}\right)=\left(\begin{array}{llll}
1 & 3 & 5 & 2
\end{array}\right) \text {) } \\
& a^{3}=R_{216}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 5 & 1 & 2 \\
4
\end{array}\right)=\left(\begin{array}{lll}
1 & 4 & 2 \\
5 & 3
\end{array}\right) \quad, \quad \therefore \quad \therefore \\
& a^{4}=R_{249}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 2 & 3 & 4
\end{array}\right)=\left(\begin{array}{llll}
1 & 5 & 4 & 3
\end{array} 2\right) \\
& \left.\begin{array}{c}
a^{5}=R_{340}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 45
\end{array}\right):(1) \\
\left(R_{1}\right)
\end{array}\right)=(1)
\end{aligned}
$$

Let: fo be the reflection between to \qquad

$$
\left.f_{0}=\left\{\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 5 & 4 & 3 & 2
\end{array}\right\}=(2) 5\right) \cdot(34)
$$

f_{1} be the reflection in line d_{1}

$$
f_{1}=\left\{\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 5 & 4
\end{array}\right\}=(1: 3)(4,5)
$$

f_{2} be the reflection in line L_{2}

$$
f_{2} \cdot\left\{\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 \ldots & 2 & 1
\end{array}\right\}(15)(24)
$$

f_{2} be the reflection in line L_{3}
$f_{3}=\left\{\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 5 & 4 \\ \hline\end{array}\right\} \quad(2)(35)$
f_{4} be the reflection in line L_{4} :

$$
f_{4}=\left\{\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 1 & 5
\end{array}\right\}(14)(23)
$$

Let s be a reflection given by $f 1$.

$$
\begin{aligned}
& a_{s}=(12345)(13)(45)=(14)(23)=f_{4} \\
& a_{s}^{2}=(13524)=(13)(45)=(15)(24)=f_{2} \\
& a_{3}^{3} s=(14253)(13)(45)=(25)(35): f_{0} \\
& a^{4} s=(15432)(13)(45)=(12)(35)=f_{3} \\
& a^{5} s=(1)(13)(48)=(13)(45)=f_{1}
\end{aligned}
$$

$\left\{\eta / s \Rightarrow\left\{a \cdot s, a^{2} \cdot s, a^{3} \cdot s, a^{*} s, a^{s} s\right\}\right.$ is: the set of ...Reflector of D_{s}

$$
V^{\prime} e r y
$$

'one!

HW TWO, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) Given $(S, *)=<a>$ for some $a \in S$ and S has exactly 24 elements. Let $F=\{b \in S \mid S=\}$. Write the elements of F in terms of a. How many elements does F have?.
(i1) Let $S=\left\{(a, b) \mid a \in Z_{3}^{*}, b \in Z_{3}\right\}$. Define $*$ on S such that $\operatorname{if}\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in S$, then $\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right)=$ $\left(x_{1} y_{1}(\bmod 3), x_{1} y_{2}+x_{1} y_{1}(\bmod 3)\right)$. Then $(S, *)$ satisfies the associative property (do not prove this). Construct the Caley's table of $(S, *)$. By staring at the table: Is S a group? if yes, what is e ? what is the inverse of each element? Is S cyclic? If yes, find $a \in S$ such that $S=\langle a\rangle$.
(iii) Let D be a group with 47 elements. Prove that D is abelian? Can you say more?
(if) Let D be a group, H_{1}, H_{2} be two subgroups of D such that $H_{1} \nsubseteq H_{2}$ and $H_{2} \nsubseteq H_{1}$. Prove that $H_{1} \cup H_{2}$ is never a subgroup of D.
(c) Let D be a group, and H_{1}, H_{2} be two subgroups of D. Prove that $H_{1} \cap H_{2}$ is a subgroup of D.
(vi) Let $(S, *)$ be a an abelian group with identity e. Fix an integer $n \geq 2$, and let $F=\left\{a \in S \mid a^{n}=e\right\}$. Prove that $(F, *)$ is a subgroup of S. Assume $n=11$. Prove that either $F=\{e\}$ or F has at least 11 elements.
Construct the Caley's table for $(U(9), .9)$. Is $U(9)$ is cyclic? If yes, then find $a \in U(9)$ such that $(U(9), .9)=<a>$.
Submit your solution on Tuesday October 4, 2016 at 2pm. Faculty information

[^0]Question. 1
(i)

$$
\text { GIVEN: } \begin{gathered}
(S, *)=\langle a\rangle \text { for some } a \in S \\
|S|=24 \text { exactly } \\
F=\{b \in S \mid S=\langle b\rangle\}
\end{gathered}
$$

\rightarrow Elements of Fin terms of a

$$
S=\left\{a, a^{2}, a^{3}, \ldots, a^{24}=e\right\}
$$

Required to Find: All elements in 5 that have ain order of 24
Find all m such that $\left|a^{m}\right|=\frac{24}{\operatorname{gcd}\left(m_{2} 24\right)}=24$

$$
\begin{aligned}
& \operatorname{gcd}(m, 24)=1 \\
& \text { Hence, } m=\{1,5,7,11,13,17,19,23\} \\
& F=\left\{a, a^{5}, a^{7}, a^{11}, a^{13}, a^{17}, a^{19}, a^{23}\right\}
\end{aligned}
$$

\rightarrow How many elements does F have?

$$
|F|=8
$$

(ii) GIVEN: $S=\left\{(a, b) \mid a \in \mathbb{Z}_{3}^{*}, b \in \mathbb{Z}_{3}\right\}=\{(1,0),(1,1),(1,2),(2,0),(2,1)$,

$$
\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right)=\left(x_{1} y_{1}(\bmod 3), x_{1} y_{2}+x_{2} y_{1}(\bmod 3)\right)
$$

\rightarrow Construct the Coley's table

$*$	$(1,0)$	$(1,1)$	$(1,2)$	$(2,0)$	$(2,1)$	$(2,2)$
$(1,0)$	$(1,0))$	$(1,1)$	$(1,2)$	$(2,0)$	$(2,1)$	$(2,2)$
$(1,1)$	$(1,1)$	$(1,2)$	$(1,0))$	$(2,2)$	$(2,0)$	$(2,1)$
$(1,2)$	$(1,2)$	$(1,0))$	$(1,1)$	$(2,1)$	$(2,2)$	$(2,0)$
$(2,0)$	$(2,0)$	$(2,2)$	$(2,1)$	$(1,0))$	$(1,2)$	$(1,1)$
$(2,1)$	$(2,1)$	$(2,0)$	$(2,2)$	$(1,2)$	$(1,1)$	$(1,0))$
$(2,2)$	$(2,2)$	$(2,1)$	$(2,0)$	$(1,1)$	$(1,0)$	$(1,2)$

\rightarrow Is s a group?
CLOSURE: By staring CH the Caley's table, the closure carom is satisfied
ASSOCIATIVE: Given in the question, and hence, satisfied
IDENTITY: clear that $[e=(1,0)$ since

$$
a *(1,0)=(1,0) * a=a \quad \forall a \in S
$$

$$
\begin{aligned}
& \text { INVERSE: } \\
& \begin{array}{l}
(1,0) \text { With self } \\
(1,1) \text { and }(1,2) \\
(2,0) \text { with self } \\
(2,1) \text { and }(2,2)
\end{array} \\
& \rightarrow \text { Is S cyclic? } \\
& |(1,0)|=1 \\
& |(1,1)|=3 \\
& |(1,2)|=3 \\
& |(2,0)|=2 \\
& |(2,1)|=6 \rightarrow \text { could } \\
& \begin{aligned}
&|(2,2)|= 6>\text { be the } \\
& \text { generators }
\end{aligned} \\
& \rightarrow \text { Check: } \\
& S=\left\{(2.1),(2.1)^{2}=(1,1),(2,1)^{3}=(2.0),\right. \\
& \left.(2,1)^{4}=(1,2),(2,1)^{5}=(2,2),(2,1)^{6}=(1,0)\right\} \\
& =\left\{(2,2),(2,2)^{2}=(1,2),(2,2)^{3}=(2,0),\right. \\
& (2,2)^{4}=(1,1),(2,2)^{5}=(2,1),(2,2)^{6}=(1,0) \\
& \therefore S \text { is cyclic } \Rightarrow S=\langle(2,1)\rangle=\langle(2,2)\rangle
\end{aligned}
$$

(iii) GIVEN: D is a group

$$
|\Delta|=47
$$

\rightarrow show that D is an abelian group:
We notice that ID I is a prime number.
Let $a \in D$, such that a is not the identity $(a \neq e)$.
We know that the cyclic grasp generated by a is a sulograp of $D \Rightarrow \angle a\rangle \leqslant D$
By grange, the order of $\langle a\rangle$ divides $|D|$
$\Rightarrow|=c|\rangle \mid 47$
47 is prime \Rightarrow the divers of 41 are 1 and itself
Sincejate $\Rightarrow|<a\rangle 1>1$, and hence, $1<a \geqslant 1$ must be $t \rightarrow \rightarrow$ can your say more?

7/4 we pry in our class nates that every cyclic pup is an abelian
Hence is abelian.
(iv) GINEN: D is a group.

$$
\begin{aligned}
& H_{1}<D \text { and } H_{2}<D \\
& H_{1} \nsubseteq H_{2} \text { and } H_{2} \nsubseteq H_{1}
\end{aligned}
$$

\rightarrow Prove that $H_{1} \cup H_{2}$ can never be a subgroup of D :
Let $a \in H_{1}$ and $a \notin H_{2}$
Let $b \in H_{2}$ and $b \notin H_{1}$
Hence, $a \in H_{1} \cup H_{2}$ and $b \in H_{1} \cup H_{2}$
Clear that $a * b \notin H_{1}$ and $a * b \notin H_{2}$
Therefore, $a * b \notin H_{1} \cup H_{2}$
4//2 \therefore Closure is not schislied \Rightarrow
\rightarrow Exanple:
\square a group to begin witt
$\left(D, t_{6}\right)$ where $D=\{0,1,2,3,4,5\}$
$H_{1}=\{0,2,4\}$ and $H_{2}=\{0,3\}$

$$
\begin{aligned}
& H_{1} \cup H_{2}=\{0,2,3,4\} \\
& 2+_{6} 3=5 \notin H_{1} \cup H_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { jun Lan mine }{ }^{1 T} \text { Sher } 13-1 * b \in H_{1} \cap H_{2} \text {. } \\
& \text { Let } a, b \in H_{1} \cap H_{2} \text {. Show } a^{-1} *
\end{aligned}
$$

(v) GIVEN: D is a group $a^{-1} \times b \in H_{2}$. Thus $a^{-1}+b \in H_{1} B H_{2}$.

$$
H_{1}<D \text { and } H_{2}<D
$$

\rightarrow Show that $\left(H_{1} \cap H_{2}\right)<D$:
CLOsure: let $a \in H_{1} \cap H_{2}$ and $b \in H_{1} \cap H_{2}$ then $a, b \in H_{1}$ and $a, b \in H_{2}$

Since H_{1} is a subgroup, then $a * b \in H_{1}$ Similarly, $a * b \in H_{2}$
Hence, $a * b \in H_{1} \cap H_{2}$ closure is satisfied
Associative: clear, since H_{1} and H_{2} are subgroups Therefore, $\mathrm{H}_{2} \cap \mathrm{H}_{2}$ Sclitisfies the associative axiom/
IDENTITY: Since H_{1} and H_{2} are subgroups, the identity e is in both

$$
\Rightarrow e \in H_{1} \text { and } e \in H_{2}
$$

Hence, $e \in H_{1} \cap H_{2}$
INVERSE: if $a \in H_{1} \cap H_{2}$, then $a \in H_{1}$ and $a \in H_{2}$
if $a \in H_{1}$, then $a^{-1} \in H_{1}$, because H_{1}, is a subgroup. Similarly, $a \in H_{2} \Rightarrow a^{-1} \in H_{2}$
Hence, $a^{-1} \in H_{1} \cap H_{2}$

* $H_{1} \cap H_{2}$ satisfies all group axioms and $H_{1} \cap H_{2} \subset D$ $\Rightarrow H_{1} \cap H_{2}<D *$

Let $a, b \in F$. show shorter-$a^{-1}+b \in \mathcal{F}$
(vi) GIVEN: $(S, *)$ is an abelian group with identity e

$$
F=\left\{a \in s \mid a^{n}=e\right\} ; n \geqslant 2
$$

\rightarrow Prove that $(F, *)$ is a subgroup of S : since is
CLOSURE: Since $(S, *)$ is abelian we abetian $\left(a^{-1} * b\right)^{n}=$ $a * b=b * a \quad \forall a, b \in S$

$$
\begin{aligned}
& a * b=b * a \text { (a ,bes } \forall b= \\
& \text { We cilso know that since } a * b=b * a \text {, then }-1
\end{aligned}
$$

$$
(a * b)^{n}=a^{n} * b^{n}
$$

$$
\text { Let } \left.a, b \in F \Rightarrow a^{n}=e \quad\right\} \quad b^{n}=e
$$

exec.

$$
(a * b)^{n}=a^{n} * b^{n}=e * l=e
$$

$$
\begin{aligned}
& (a * b)^{n}=a^{n} * b^{n}=e * e=e \\
& \text { Since }(a * b)^{n}=e \text {, then } a * b \in F / \text { closure } \\
& \text { satisfied }
\end{aligned}
$$

ASSOCIATVE: (lear, since $+\angle S$? S is a group
IDENTITY: Since $e^{n}=e \Rightarrow e \in F$
INVERSE: Let $a \in F \Rightarrow a^{n}=e$
We know that $|a|=\left|a^{-1}\right|$

$$
\Rightarrow a^{m}=e \quad \beta\left(a^{-1}\right)^{m}=e
$$

if $n=m \Rightarrow\left(a^{-1}\right)^{n}=e \Rightarrow a^{-1} \in F$
if $n \neq m \Rightarrow$ we know that $m \mid n$, and hence $\left(a^{-1}\right)^{n}=e \Rightarrow a^{-1} \in F$
$* F$ is a group ${ }^{\circ}$ F $F C S \Rightarrow F<S *$
\rightarrow Assume $n=11 \Rightarrow F=\{e\}$ or $|F|$ is at least 11 $F=\left\{\bar{a} \in S \mid a^{\prime \prime}=e\right\}$
11 is prime $\Rightarrow F=\{a \in S| | a \mid=11\}$ since there cannot be any other m 'less than 11 such that $a^{m}=e$

In a group, we know that the order of any element in the group divides the order of the group $\Rightarrow|a||F| \forall a \in F$
Since $|a|=11 \Rightarrow|F|=11,22,33,44, \ldots$

* F must have at least 11 elements

Assume that there exists no element in S whose order is 11, hence only e satisfies $e^{\prime \prime}=e$

$$
* F=\{e\} *
$$

(vii) Given: $($ Ul $)$, -g $)$

$$
\begin{aligned}
& U(9)=\{a \in\{0,1,2,3,4,5,6,7,8\} \mid \operatorname{gcd}(a, 9)=1\} \\
& U(9)=\{1,2,4,5,7,8\}
\end{aligned}
$$

\rightarrow Construct the coley's table:

$\cdot 9$	1	2	4	5	7	8
1	(1)	2	4	5	7	8
2	2	4	8	1	5	7
4	4	8	7	2	1	5
5	5	1	2	7	8	4
7	7	5	1	8	4	2
8	8	7	5	4	2	1

\rightarrow Is U(9) cyclic?

$$
|1|=1
$$

$$
\begin{aligned}
& |2|=6 \rightarrow \text { could be } \\
& |4|=3
\end{aligned}
$$

$$
|4|=3
$$

the generators

$$
|7|=3
$$

$$
|8|=2
$$

$G\left(\right.$ heck: $u(9)=\left\{2,2^{2}=4,2^{3}=8,2^{4}=7,2^{5}=5,2^{6}=1\right\}$
Hence, U(9) $=\langle 2\rangle$ cyclic $\}$ generated by $a=2$

$$
U(9)=\left\{5,5^{2}=7,5^{3}=8,5^{4}=4,5^{5}=2,5^{6}=1\right\}
$$

Hence. ul) $=\langle 5\rangle$ cyclic β generated by $a=5$

HW III, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) We know that $6 Z, 8 Z$ are infinite cyclic subgroups of $(Z,+)$. Hence $6 Z \cap 8 Z$ is also an infinite cyclic subgroup and thus $6 Z \cap 8 Z=a Z$ for some $a \in Z$. Find all possible values of a. Explain?
Sketch. Let a be the least positive integer that "lives" in $\mathbf{6 Z}$ and "lives" in $\mathbf{8 Z}$. Hence $6 \mid a$ and $8 \mid a$. Since a is the least positive integer where $6 \mid a$ and $8 \mid a$, we conclude that $a=L C M[6,8]=24$. Thus $a=24$. Thus $6 Z \cap 8 Z=24 Z$
(ii) In general fix $a, b \in(Z,+)$. Then $a Z \cap b Z=c Z$ for some $c \in Z$. Find all possible values c (of course write c in terms of a, b.
Sketch: Let $d \in(a Z \cap b Z)$. Then $a \mid d$ and $b \mid d$. Let $h=l c m[a, b]$. Then h is the least positive integer that lives in $a Z \cap b Z$. Since $a Z \cap b Z$ must be an infinite cyclic subgroup of Z, we conclude that $a Z \cap b Z=l c m[a, b] Z=h Z$. We know that if $H=\left\langle v>\right.$ is an infinite cyclic group, then H has exactly two generators, namely: v and v^{-1}. Thus $a Z \cap b Z=l c m[a, b] Z=-l c m[a, b] Z$. Thus all possible values of c are : $\mathbf{l c m}[\mathbf{a}, \mathbf{b}]$ and $-\mathbf{l c m}[\mathbf{a}, \mathbf{b}]$.
(iii) Let $(S, *)$ be a group. Assume that $a * b=b * a$ for some $a, b \in S$. Prove that $a * b^{-1}=b^{-1} * a$.

Proof Since $a * b=b * a$, we have $b^{-1} * a * b * a^{-1}=b^{-1} * b * a * a^{-1}=e * e=e$. Since $b^{-1} * a * b * a^{-1}=e$ we conclude that $b^{-1} * a=e * a * b^{-1}=a * b^{-1}$.
(iv) Let $(D, *)$ be a group with 8 elements. Assume that D has a unique subgroup of order 2 and it has a unique abelian subgroup of order 4. Prove that D is an abelian group. In fact, you can prove that $(D, *)$ is cyclic.
Proof: Let F be the unique abelian subgroup of D with 2 elements and let M be the unique abelian subgroup of D with 4 elements. Since M is abelian with 4 elements, we know that M has an abelian subgroup K with 2 elements. Since K is also an abelian subgroup of D with 2 elements, we conclude that $K=F$. Now let $a \in D \backslash M$ and let $c=|a|$. Hence by Lagrange Theorem, $c=1$ or 2 or 4 or 8 . We know that $\left\{a, a^{2}, \ldots, a^{c}=e\right\}=<a>$ is an abelian (cyclic) subgroup of D with c elements. Since $a \in D \backslash M$ and $F \subset M$ are unique abelian subgroups of order 2 and 4 respectively, we conclude that $c \neq 2$ and $c \neq 4$. Clearly, $c \neq 1$. Hence $c=8$. Thus $D=\langle a\rangle$.,
(v) Let $(D, *)$ be a group. Assume $a * b=b * a$ for some $a, b \in D$. Given $|a|=n,|b|=m$, and $\operatorname{gcd}(n, m)=1$. Prove that $|a * b|=n m$. [Hint: Since $\operatorname{gcd}(n, m)=1$, from class notes we know that if $n \mid m c$ for some $c \in Z$, then $n \mid c$. Also you need to use a trivial fact from number theory that if $\operatorname{gcd}(n, m)=1$ and $n \mid c$ and $m \mid c$ for some $c \in Z$, then $n m \mid c$]
Proof: Let $k=|a * b|$. Since $a * b=b * a,(a * b)^{n m}=\left(a^{n}\right)^{m}\left(b^{m}\right)^{n}=e * e=e$. Hence $k \mid n m$. Now $e=(a * b)^{k m}=a^{k m} *\left(b^{m}\right)^{k}=a^{k m} * e=a^{k m}$. Thus $n \mid k m$. Since $g c d(n, m)=1$, we conclude that $n \mid k$. Similarly, $e=(a * b)^{k m}=\left(a^{m}\right)^{k} * b^{k n}=e * b^{k n}=b^{k n}$. Thus $m \mid k n$. Since $g c d(n, m)=1$, we conclude that $m \mid K$. Since $n \mid k$ and $m \mid k$ and $\operatorname{gcd}(n, m)=1$, we conclude that $n m \mid k$. Since $k \mid n m$ and $n m \mid k$, we conclude that $k=n m$.
(vi) Let $(D, *)$ be a group. Assume $a * b=b * a$ for some $a, b \in D$. Given $|a|=6$ and $|b|=14$. Prove that $(D, *)$ has a cyclic subgroup of order 42. [hint: Some how show that D has an element of order 7 , then you need to use (V)]
Proof. We know $\left|b^{2}\right|=14 / \operatorname{gcd}(2,14)=7$. Since $a * b=b * a$, it is clear that $a * b^{2}=b^{2} * a$. Since $\operatorname{gcd}(\mathbf{6}, 7)=\mathbf{1}$, by part $\mathbf{V}\left|a * b^{2}\right|=42$. Hence $H=<a * b^{2}>$ is a cyclic subgroup of D with 42 elements.
(vii) Let D be an abelian group with $p q$ elements where p, q are distinct prime numbers. Prove that D is cyclic.

Proof. Since D is abelian, we have a subgroup H of order p and a subgroup K of order q. Let $a \in H$ such that $a \neq e$. By Lagrange Theorem we conclude $|a|=p$. Similarly, if $b \in K$ and $b \neq e$, then $|b|=q$. Thus $|a * b|=p q$ by part V. Hence $D=\langle a * b\rangle$
(viii) Let D be a finite abelian group and H be a proper subgroup of D with 10 elements. Assume $a \in D \backslash H$ such that $|a|=3$. Then
a. Show that $a * H, a^{2} * H, a^{3} * H$ are distinct left cosets of H [Hint: First note that $a^{3} * H=e * H=H$. We know $a * H \cap H=\emptyset$. So show $a^{2} * H \cap a * H=\emptyset$ and $\left.a^{2} * H \cap H=\emptyset\right]$.
Proof: We show $a^{2} \notin H$ and $a^{2} \notin a * H$. Assume that $a^{2} \in H$. Since $a^{3}=e, a * a^{2}=e$. Thus $e \in a * H$, impossible since $a * H \cap H=\emptyset$. Assume $a^{2} \in a * H$. Thus $a^{2}=a * h$ for some $h \in H$. Hence $a=h$, impossible. Thus $H, a * H, a^{2} * H$ are all distinct left cosets of H.
b. Show that $F=a * H \cup a^{2} * H \cup a^{3} * H$ is a subgroup of D with 30 elements.

Proof: Note that $H=a^{0} * H=e * H$ and hence $F=a^{0} * H \cup a * H \cup a^{2} * H$. Let $x, y \in F$. Since F is finite, we only need show $x * y \in F$. Hence $x=a^{i} * h, y=a^{k} * g$ for some $i, k, 0 \leq i, k \leq 2$ and some $h, g \in H$. Since |a| $=\mathbf{3}$ and D is abelian, $x * y=\left(a^{i} * h\right) *\left(a^{k} * g\right)=a^{(i+k) \bmod 3} *(h * g)$. Since $0 \leq(i+k) \bmod 3 \leq 2$ and $h * g \in H$, we are done.
a. Find all distinct left cosets of H. Note there must be exactly 4 such left cosets : This is my present to you... just straight forward calculations
b. Is $H \cup 5 H$ a subgroup of $U(16)$? Is $H \cup 9 H$ a subgroup of $U(16)$? explain

Note $K=H \cup 5 H=\{1,7,3,5\} .(5.3=15 \notin K$, so no) and $L=H \cup 9 H=\{1,7,9,15\}$ (by Caley's Table L is a subgroup)

Submit your solution on Tuesday October 18, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW IV, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) Let $\alpha=(1452) o(265) \in S_{6}$. Find $|\alpha|$

Typical question

(ii) Let $\beta \in S_{7}$ and $x=\beta o(2631) o \beta^{-1}$. Find $|x|$.

Typical question

(iii) Let $D=\left(Z_{4},+\right) \times\left(Z_{6},+\right)$. Give me a subgroup H of D such that there is no subgroup L_{1} of Z_{4} and there is no subgroup L_{2} of Z_{6} where $H=L_{1} \times L_{2}$.
Solution: The element $(2,3)$ in D is of order 2. Hence $H=\{(0,0),(2,3)\}$ is a subgroup of D but there is no subgroup L_{1} of Z_{4} and there is no subgroup L_{2} of Z_{6} where $H=L_{1} \times L_{2}$.
(iv) Let $D=(S, * 1) \times(F, * 2)$ be a cyclic group (you may assume $|S|>1,|F|>1$). Let H be a subgroup of D. Prove that there exists a subgroup K of S and there exists a subgroup L of F such that $H=K \times L$. [Hint: You may use the fact that if $\operatorname{gcd}(n, m)=1$ and $i \mid n m$, then $i \mid n$ or $i \mid m$ or $i=a b(a>1$ and $b>1)$ such that $a \mid n$ and $b \mid m$.)
[OBSERVE that the group in part III is not cyclic, interesting!]
Solution: We know that F, S are cyclic and finite groups. Let $n=|S|$ and $m=|F|$. Hence $|D|=n m$. Since D is cyclic, we know $g c d(n, m)=1$. Let H be a subgroup of D and $k=|H|$. Since D is cyclic, we know that H is the only subgroup of D that has k element. Since $k \mid n m$ and $\operatorname{gcd}(n, m)=1$, we conclude that $k=a b$ such that $a|n, b| m$, and $g c d(a, b)=1$ (note it is possible that $a=1$ or $b=1$). Since $a \mid n, S$ has a unique subgroup L_{1} of order a. Since $b \mid m$, F has a unique subgroup L_{2} of order b. Thus $L_{1} \times L_{2}$ is the unique subgroup of D that has k elements. Hence $H=L_{1} \times L_{2}$.
(v) Let $a \in S_{n}$ be a permutation (i.e $a=\left(a_{1} \cdots a_{k}\right)$. Note that not every function in S_{n} is a permutation). Prove that $a \in A_{n}$ if and only if $|a|$ is an odd number.
Solution: Since $a=\left(\begin{array}{lll}a_{1} & a_{2} & \cdots\end{array} a_{k-1} a_{k}\right)=\left(\begin{array}{ll}a_{1} & a_{k}\end{array}\right) o\left(a_{1} a_{k-1}\right) o \cdots o\left(a_{1} a_{2}\right)$, (k-1)-2-cycles, we conclude that $a \in A_{n}$ iff ($\mathbf{k}-\mathbf{1}$) is even. Hence k must be an odd positive integer. Thus $|a|=k$ is odd.
(vi) We know that D_{4} is a subgroup of S_{4} and hence $L=D_{4} \cap A_{4}$ is a subgroup of S_{4}. Find L. Is $L \triangleleft A_{4}$? EXPLAIN

Solution: Let $L=D_{4} \cap A_{4}=\{(1),(13)(24),(13)(24),(23)(14)\}$. Now if we view L as a subgroup of A_{4}. Then $\left[A_{4}: L\right]=3$. Thus L has exactly 3 left cosets, say: L, $a o L$, and $b o L$. Now do the calculation, show: $a o L=L o a$ and $b o L=L o b$. Thus we conclude that $L \triangleleft A_{4}$.
(vii) Let D be a group with 15 elements. Assume $H \triangleleft D$ such that $|H|=3$. Assume there exists $a \in S \backslash H$ such that $|a| \neq 5$. Prove that D is cyclic. [Hint: you may want to consider D / H !!]
Solution: We know D / H is a group with 5 element. Consider the natural group homomorphism from D onto D / H (given by $x \rightarrow x * H$). Let $k=|a|$, and $m=|a * H|$ (note that m is the order of the element $a * H$ in D / H). We know that $m \mid k$ and $m \mid 5$ (since $|D / H|=5$). Since $a \notin H, m \neq 1$. Hence $m=5$. Thus $5 \mid k$. Since $5 \mid k$ and $k \mid 15$ and $a^{5} \neq 1$, we conclude that $k=15$. Thud D is cyclic.
(viii) Let F be a nontrivial group-homomorphism from $\left(Z_{6},+\right)$ into $\left(Z_{8},+\right)$. Find $\operatorname{Ker}(F)$ and find $\operatorname{Image}(F)$ (i.e. Range (F)).
Solution: We know $Z_{6} / \operatorname{Ker}(F) \approx \operatorname{Image}(F)$ and $\operatorname{Image}(F)$ is a subgroup of Z_{8}. Thus $|\operatorname{Image}(F)|$ is a factor of 8 . Let $a=|\operatorname{Image}(F)|, b=\left|Z_{6} / \operatorname{Ker}(F)\right|$. Hence $a=b$. Since $b \mid 6$ and $a=b$ and $a \mid 8$, we conclude that $a=b=2$. Now Z_{8} has exactly one subgroup of order 2 . Thus $\operatorname{Image}(F)=\{0,4\}$. Since $b=2$, we conclude $|\operatorname{Ker}(F)|=3$. Since Z_{6} has exactly one subgroup of order 3, we conclude $\operatorname{Ker}(F)=\{0,2,4\}$.
(ix) Is the group $\left(Z_{4},+\right)$ isomorphic to $U(8)$? EXPLAIN.

Solution: No, Z_{4} is cyclic but $U(8)$ is not cyclic
(x) Give me an example of a non-abelian group say D such that D has a normal subgroup H where D / H is abelian.

Solution: Let $D=S_{3}$ and $H=A_{3}$.
(xi) Give me an example of an abelian group say D that is not cyclic but D has a normal subgroup H where D / H is cyclic.
Solution: Let $D=U(8)$ and $H=\{1,7\}$.
(xii) Give me an example of a group say D that has a normal subgroup H such that there is an $a \in D$ where $|a|=\infty$ but the order of the element $a * H$ in G / H is finite.
Solution: Let $D=(Z,+), H=5 Z$, and $a=1$. Then $|1|=\infty$. Since $Z / 5 Z \approx Z_{5},|1+5 Z|=5$.
(xiii) Give me an example of a group say D such that for each integer $n \geq 2$, there is an element $a \in D$ with $|a|=n$. (note that such D must be infinite)
Solution: Let $D=(Q,+)$ and $H=Z$. Then $\left.\frac{1}{n}+Z \right\rvert\,=n$ in Q / Z.
(xiv) Let $n \geq 3$ and let $x \in S_{n}$. Prove that x^{2} is always an even function.

Solution: Since $A_{4} \triangleleft S_{4}$, we know that S_{4} / A_{4} is a group with exactly 2 elements. Let $x \in S_{4}$. Then $\left(x o A_{4}\right)^{2}=$ $x^{2} o A=A$ in S_{4} / A_{4}. Thus $x^{2} \in A_{4}$.

DUE DATE : Nov 18, 2016, Thursday at 2pm

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

[^0]: Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, тrw. ayman-badawi.com

