320 Abstract Algebra Fall 2016, I+1

HW one, MTH 320, Fall 2016

Ayman Badawi

- QUESTION 1. (i) Let (S, *) be a group. Fix $a, b \in S$. Show that if a * b = a * c for some $c \in S$, then b = c. Also show that if b * a = c * a, then b = c.
- (ii) Let (S, *) be a group. Fix $a, b \in S$. Show that the equation a * x = b has unique solution and find x. Note the x * a = b has also unique solution, but only show it for a * x = b.
- (iii) Let (S, *) be a group and assume |a| = 12 for some $a \in S$. For what values of m $(1 \le m \le 12)$ do we have $|a^m| = 42$?
- (iv) Let (S, *) be a group and assume |a| = 6 for some $a \in S$. Let $F = \{e, a, a^2, ..., a^5\}$. Construct the Caley's table of (F, *). By staring at the table you should observe that F is a group and hence a subgroup of S.
- (v) Convince me that if n is not prime, then (Z_n^*, X_n) is never a group.
- (vi) Convince me that if n is prime, then (Z_n^*, X_n) is a group.[hint: recall Fermat little Theorem, if p is prime and $p \nmid m$ (meaning p is not a factor of m), then $m^{(p-1)}(modp) = 1$.]
- (vii) Let $F = \{3, 6, 9, 12\}$, and * = multiplication module 15. Convince me that (F, *) is a group by constructing the Caley's table. What is e in F? Find the inverse of each element of F. INTERESTING!!!!
- (viii) Consider (D_5, o) . We know that D_5 has 10 elements. Let s_1 be one of the reflections (we know that D_5 has 5 reflections). Let $a = R_{72}$. Convince me that $\{a \circ s_1, a^2 \circ s_1, a^3 \circ s_1, a^4 \circ s_1, a^5 \circ s_1\}$ = the set of all reflections in D_5 [Hint: may be you need to use (i)]

Submit your solution on Tuesday September 20, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, PO. Box 26666, Sharjah, United Arab Emirates, E-mail: abadawi@aus.edu, www.ayman-badawi.com

Ruestion 1 i) Let (S, *) be a group. Fix a, b ES. Show that if axb = a for some c E S, then b = C. Also show that if b* a = cx a then b=c Proof: If a * b = a * c. Then, b= e = (a + a) b (by Trivial result = 2) $= a^{-1}(axb) = a^{-1}(axc)$ = $d^2 (law (a^2 + a)) = exc = c$ Hence b=c Proof: If bxa = cxa. Then $b = b * e = b (a * a^{-1})$ = (b * a) $a^{-1} = (c * a) a^{-1}$ = c(a * a^{-1}) = c * e = c Hence b= C ii) Let (S,x) be a group. Fix a, b ES. Show that the equation axx has a unique solution. Find x. Proof: 0*× = h X = e + x= (0⁻¹ * 0) X $= (a^{-} + a) x$ = $a^{-1}(ax) = a^{-1} + b$ Hence x = at * b Proof of uniqueness: Suppose m is also a solution to a*x = b. Then, a*m=b = a * x M = XHence the equation a* x=b has a unique solution

iii) Let (S, *) be a group and assume [a] = 12 for. some aes.

a' = 12 = 12 $|a^{2}| = 12 = 12$ gcd (1,12) gcd (7,12) $|0^8| = 12 = 12 = 3$ $|0^2| = 12 = 12 = 0$ $|a^3| = \frac{gcd(2, 12)}{12}$ gcd (8,12) $|Q^{4}| = \frac{12}{9cd(9,12)} = \frac{12}{3} = \frac{4}{9cd(9,12)}$ $|Q^{10}| = \frac{12}{9cd(0,12)} = \frac{12}{2} = \frac{12}{2}$ = 12 = 4 gcd (3,12) 3 $|a^{\dagger}|_{=} |2 = 12 = 3$ 6 gcd (4, 12) $|a^{s}| = 12 = 12$ [a⁴] = 12____ = 12 gcd (5,12) gcd (11,12) $|a^{l}| = 12 = 12 = 2$ $|a^{12}| = 12 = 1$ gial (4,12) 6 gccl (12, 12) For what values of m (1 4 m 4 12) do we have am = 12? m = 1, m = 5, m = 7, m = 11For what values of $m(1 \le m \le 12)$ do we have $a^m = 4$? m = 3 and m = 9

ivLet (S, *) be a group and assume |a| = 6 for some $a \in S$. Let $F = \{e, a, a^3, \dots, a^5 \}$. Construct the Caley's table of (F, *). Given |a| = 6 $\rightarrow |a| = n \Rightarrow 0^n = e$ $F = \{e, a, a', a^2, \dots, a^5 \}$

 $|\alpha| = \omega \Rightarrow \alpha^{\omega} = c$

Caley's Table of (F,*

	e	٥	<u>_</u> 1	a	0 ¹⁴	q ^s	
e	e	a	a^2	0,8	α*	as	
0,	٩	az	a ³	0.4	as	e	
) a ²	a^2	a ^{\$}	۵*	٩s	e	a	1
Q ³	a ³	a	۵5	e	α	a²	
م*	a*	as	e	٩	a ²	a ³	
۵\$	as	e	0	az	a ¹	0,*	

(V) Convince me that if n is not prime, then (Zn, Xn) is never a group. Zn= [0,1,2,3,... n-1] $Zn = \{1, 2, 3, \dots, n - 1\}$ Suppose n is not prime, then n=pq, where 12p2n and Here $P_n q = 0$ $1 \leq q \leq n$ Since pq = 0 (mod n) $\neq Z_n$ and 0 is not in Zn* ()Hence (Zn*, Xn) is never a group.

(vi Convince me that if n is prime, then (Zn, Xn) is a gri Z*n = {1, 2, 3, 4, ... p-1} a^{P-1} = 1 (mod p) 1) Closunz: Let a, b E Zn. Show a.bez, Suppose a.bzo. Then nlab => nla or nlb (since nis (grime) = but n ta and ntb, because 15a, b=n-)-Thus and for Hence and EZT. 2) Invasti Let a EZ, Sincent we know a (mod n) = 1. Thug $a_n a^{n-2} (mod(n)) = 1 - Hence$ $a^{-1} \equiv a^{n-2} (mod(n)) \in \mathbb{Z}_{p}^{\infty}$

vii Let F= {3,6,9,12}, and *= multiplication module 15. C me that (F, *.) is a group by constructing the Caley: What is e in F? Find the inverse of each element of	Ta
Given that F= {3, 6, 9, 123 and * = operation	
(a*b) mod 15 * remainder of (axb)/15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
inverse of 3 is 12	attend to make
inverse of G is 9 inverse of 9 is 6	
1 inverse of 12 is 3	
14	· · · · · · · · · · · · · · · · · · ·
	alatina di seconda
	th farite
	••••••
	The dataset

vill Consider (Ds, o). We know Ds has 10 elements. Let s, be one of the reflections. Let a = R72. Convince me that { aos, a2 os, a3 os, a4 os, a os, f = the set of all reflections in Ds. is and as attended and and in If r is a rotation Ro and s is any reflection then Ds can be written as $[1, r, r^2, r^3, r^4; a: s_1, a^2, s_1; a^3, s_1; a^4, s_1; a^5, s_1^7]$ $L_1 = B(2)$ 122 . Lo (3)A (1) Ð (5) 1.3: (4) 23 10 14 a = R72 = 1 2 3 4 5 (12345) 23.4.51 $a^{2} R_{1443} (12345) = (13524)^{1}$ 34 5 1 2 $a^{3} = R_{216} = (12345) = (14253)$ 45123 $a_{*}^{4} R_{248} = (12345) = (15432)$ (51234) = (15432) $\begin{array}{c} a_{2}^{5} = R_{340} = (12345) = (1) \\ (R_{v}) & (12345) = (1) \\ \end{array}$

Let: fo be the reflection between Lo 12345 = (25)(34)f, be the reflection in line 1, $f_{1} = \left\{ \begin{array}{ccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{array} \right\} = (1 \cdot 3^{2}) (4 \cdot 5)$ fz be the reflection in line Lz f2. 1 2 3 45 (15) (24) 5 4 3 .. 2 1 for be the neflection in line Lo." f3= {12345} (12)(35) 215 fy be the neflection in line Ly $f_{4} = \begin{cases} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{cases} (14) (23)$ Let s be a reflection given by f1. $q_{s} = (12345)(13)(45) = (14)(23) = 14$ $a_{s=(13524)}^{2}$ (13524) (13) (15) (24) = f₂ $a^{3}S = (14253)(13)(45) = (25)(35) = f_{0}$ S. S. S. K. C. $a^{2}S_{2}(15432)(13)(45) = (12)(35) = G_{3}$ $a's = (1)(13)(45) = (13)(4's) = f_1$ → las, as, as, as, as, as, as, is: the sct of Reflection Jæj Mg Cong Langevarent Ngu mangevarent Ngu mangevarent

MTH 320 Abstract Algebra Fall 2016, 1-1

HW TWO, MTH 320, Fall 2016

Ayman Badawi

OUESTION 1. (i) Given $(S, *) = \langle a \rangle$ for some $a \in S$ and S has exactly 24 elements. Let $F = \{b \in S \mid S = \langle b \rangle\}$. Write the elements of F in terms of a. How many elements does F have?.

Let $S = \{(a, b) \mid a \in Z_3^*, b \in Z_3\}$. Define * on S such that $if(x_1, x_2), (y_1, y_2) \in S$, then $(x_1, x_2) * (y_1, y_2) = (x_1y_1(mod3), x_1y_2 + x_2y_1(mod3))$. Then (S, *) satisfies the associative property (do not prove this). Construct the Caley's table of (S, *). By staring at the table: Is S a group? if yes, what is e? what is the inverse of each element? Is S cyclic? If yes, find $a \in S$ such that $S = \langle a \rangle$.

Let D be a group with 47 elements. Prove that D is abelian? Can you say more?

(iv) Let D be a group, H_1, H_2 be two subgroups of D such that $H_1 \not\subseteq H_2$ and $H_2 \not\subseteq H_1$. Prove that $H_1 \cup H_2$ is never a subgroup of D.

(v) Let D be a group, and H_1, H_2 be two subgroups of D. Prove that $H_1 \cap H_2$ is a subgroup of D.

(vi) Let (S, *) be a an abelian group with identity e. Fix an integer $n \ge 2$, and let $F = \{a \in S \mid a^n = e\}$. Prove that (F, *) is a subgroup of S. Assume n = 11. Prove that either $F = \{e\}$ or F has at least 11 elements.

(vii) Construct the Caley's table for $(U(9), ._9)$. Is U(9) is cyclic? If yes, then find $a \in U(9)$ such that $(U(9), ._9) = \langle a \rangle$.

Submit your solution on Tuesday October 4, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Question.1 $\frac{\text{(i)} \text{ GIVEN: } (S, *) = \langle \alpha \rangle \text{ for some } \alpha \in S}{|S| = 24 \text{ exactly}}$ $F = \frac{1}{2} b \in S | S = \langle b \rangle 3$ > Elements of Fin terms of a $S = \int Q_1 Q^2, Q^3, ..., Q^{24} = e^4$ Required to find: All elements in S that have cin order of 24 Find all m such that $|a^m| = 24$ = 24 ((c)(m,24) ((c)(m, 24) = 1)11 10 Hence, M = 1, 5, 7, 11, 13, 17, 19, 23940,05,07,0", a13, a17, a19, a232 > How many elements closs F have? F1=8 1. (NO 20 1 1 LANS **APPARTURESS**

(iii) GIVEN: $S = \frac{1}{(a,b)} = \frac{1}{a} \in \mathbb{Z}_{3}^{*}, b \in \mathbb{Z}_{3}^{*} = \frac{1}{(1,0)}, (1,1), (1,2), (2,0), (2,1$ -> (onstruct the (aley's table) (1.0) $|_{12}$ * (2,0)(2,1)(2.2)11.05 (1,2)2,0 (2.2) ((10))2,2) 2.0) (2,0)2,2) (2.1)(2.1)2.0) (2,2)(2.2)→ Is s a group? CLOSURE: By staring at the Caley's table, the closure axiom is satisfied Closure Cixiom is softisfied ASSOCIATIVE: Given in the guestion, and hence, SCHISFIED IDENTITY: CLECIT (1,0) since le= HUCH $*(1,0) = (1,0) * 0 = 0 \forall 0 \in S$ INVERSE : [(1, 0) WHY HSELF (1,1) and (1,2)(2,C) with Hself Cind (2)S cyclic? > Check: Ξ =3 $S = \{ (2,1), (2,1)^2 = (1,1), (2,1)^3 = (2,0) \}$ $(2,1)^{l_1} = (1,2), (2,1)^{5} = (2,2), (2,1)^{6} = (1,0)^{6}$ =3 =2 (2,0) $= \{(2,2), (2,2)^2 = (1,2), (2,2)^3 = (2,0)\}$ $|(2,1)| = 6 \rightarrow could$ $|(2,2)| = 6^{2}$ be the $\frac{(2,2)^{4}}{(1,1)}, \frac{(2,2)^{5}}{(2,1)}, \frac{(2,2)^{6}}{(2,2)^{5}} = (1,0)$ is cyclic $\Rightarrow S = \langle (2,1) \rangle = \langle (2,2) \rangle$ generators

(iiiii) GIVEN: D is a group IDI = 47 Show that D is an abelian group: We notice that IDI is a prime number. Let $a \in D$, such that a is not the identity $(a \neq e)$. We know that the cyclic graip generated by a is By (cercinge, the order of ∠a> divides [D] ⇒ 1<0>1/47 47 is prime ⇒ the divors of 47 are 1 and Hself Sincepte => <a> >1, and hence, <a> must > Can you say more? Hence = <a>> D is cyclic and generated We priv in our class notes that every cyclic pup is an abelicin Hence is abelian

(iv) GIVEN: D is a group. $H_1 < D$ and $H_2 < D$ $H_1 \notin H_2$ and $H_2 \notin H_1$ -> Prove that HIU HID can never be a subgroup of D: et $a \in H_1$ and $a \notin H_2$ et $b \in H_2$ and $b \notin H_1$ Hence, a E HI U HZ and b E HI, UHZ Clear that a * b & H, and a * b & H, Therefore, a * b & H, UH2 : Closure is not schisfied > Hi u Hz is not even L CL group to begin with EXAMPLE: $(D, +_6)$ where $D = \{0, 1, 2, 3, 4, 5\}$ $H_1 = 10, 2, 43$ and $H_2 = 10, 33$ $H_1 \cup H_2 = 40, 2, 3, 43$ $2 + 3 = 5 \notin H, U + 1,$

Leta, b etin Hz. show a + b etin Hz. Since a etti nHz, a etti nHz- Henre a' bethand (N) GIVEN: D is a group HI < D and Hz < D \rightarrow Show that $(H_1 \cap H_2) < D$: Since this a subgroup, then a * b E thi Similarly, a + b & H'2 Hence, a * b ∈ H, A + 12 closure is schisfied ASSOCIATIVE: clear, since HI, and HI2 are subgroups Therefore, H2 A +12 Schisfies the associative axiom IDENTITY: Since H, and H2 are subgroups, the identity e is in both ⇒eeH, and eeH2 Hence, e e H, A H2 INVERSE: If a E H, n H12, then a E H, and a E H12 if $a \in H$, then $a^-e \in H$, because H, is a subgroup. Similarly, $a \in H_2 \Rightarrow a^-e \in H_2$ Hence, $a^{-1} \in H_1 \land H_2$ ¥ HI, A H2 Satisfies all group axioms and H, A H2 ⊂ D
⇒ H1 A H2 < D ×</p>

Let a, b e.f. show a' be F. (VI) GIVEN: (S, *) is an abelian group with identity e $F = \{ a \in S \mid a^n = e^2 \}; n \ge 2$ -> Prove that (F,*) is a subgroup of S: Sine Sis n abelian (a'xb) = (LOSURE: Since (S,*) is abelian, we know that in (a) * a*b=b*a Va,bes We also know that since a * b = b * a, then $((1 * b)^n = \Omega^n * b^n$ PXC Let $a, b \in F \Rightarrow a^n = e^{\beta} b^n = e^{(a + b)^n} = a^n + b^n = e + e = e^{-\beta}$ Done Since ((1*b) = e, then (1*bEF) CIATIVE: Clear, since FCSBS is a group Since $e^n = e$ eef \Rightarrow INVERSE: Let a $a^n = e$ > $\alpha = \alpha^{-1}$ Know that $(a^{-1})^m = e$ $a^m = e_3$ > $\Rightarrow (a^{-1})^n = e$ ìĹ We know that min and M⇒ hence $(\alpha^{-1})^n = e \Rightarrow$ *Fisd group 3 FCS > F<S ¥ Assume n=11 => F= [eg or |F| is at least 11 F=haes a"=ey is prime ⇒ F= faes lal=114 since there cannot 11 be ciny other miless than 11 such that am = e

 ~ 1 In a group, we know that the order of any element in the group divides the order of the group \Rightarrow [al] [FI V a \in F $5ince |a| = 11 \Rightarrow |F| = 11, 22, 33, 44, ...$ * F must have at least 11 elements * Assume that there exists no element in S whose order is 11, hence only e satisfies e"= e el *F =

(Nin) Given: (U19), .) $U(9) = \{a \in \{0, 1, 2, 3, 4, 5, 6, 7, 8\} \ gcd(a, 9) = 1\}$ U(9) = 11, 2, 4, 5, 7, 83Construct the Caley's table: SVILL FELIN 8 •9 2 5 4 7 8 2 4 8 T 4 T 7 2 5 8 5 5 8 7 ×. 8 7 4 8 2 ULA) CYCLIC? ⇒ Is → could be the generators = 3 =6 =3 2 = 2 >Check: $U(9) = \{2, 2^2 = 4, 2^3 = 8, 2^4 = 1, 2^5 = 5, 2^6 = 1\}$ Hence, U(9) = < 2> cyclic & generalized by a=2 $U(9) = \{5, 5^2 = 7, 5^3 = 8, 5^4 = 4, 5^5 = 2, 5^5 = 1\}$ Hence, U(9) = <5> cyclic & generated by a=5

MTH 320 Abstract Algebra Fall 2016, 1-2

-. ID -

HW III, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) We know that 6Z, 8Z are infinite cyclic subgroups of (Z, +). Hence $6Z \cap 8Z$ is also an infinite cyclic subgroup and thus $6Z \cap 8Z = aZ$ for some $a \in Z$. Find all possible values of a. Explain?

Sketch. Let a be the least positive integer that "lives" in 6Z and "lives" in 8Z. Hence 6|a and 8|a. Since a is the least positive integer where 6|a and 8|a, we conclude that a = LCM[6, 8] = 24. Thus a = 24. Thus $6Z \cap 8Z = 24Z$

(ii) In general fix $a, b \in (Z, +)$. Then $aZ \cap bZ = cZ$ for some $c \in Z$. Find all possible values c (of course write c in terms of a, b.

Sketch: Let $d \in (aZ \cap bZ)$. Then $a \mid d$ and $b \mid d$. Let h = lcm[a, b]. Then h is the least positive integer that lives in $aZ \cap bZ$. Since $aZ \cap bZ$ must be an infinite cyclic subgroup of Z, we conclude that $aZ \cap bZ = lcm[a, b]Z = hZ$. We know that if $H = \langle v \rangle$ is an infinite cyclic group, then H has exactly two generators, namely: v and v^{-1} . Thus $aZ \cap bZ = lcm[a, b]Z = -lcm[a, b]Z$. Thus all possible values of c are : lcm[a,b] and -lcm[a, b].

- (iii) Let (S, *) be a group. Assume that a * b = b * a for some $a, b \in S$. Prove that $a * b^{-1} = b^{-1} * a$.
 - **Proof Since** a * b = b * a, we have $b^{-1} * a * b * a^{-1} = b^{-1} * b * a * a^{-1} = e * e = e$. Since $b^{-1} * a * b * a^{-1} = e$ we conclude that $b^{-1} * a = e * a * b^{-1} = a * b^{-1}$.
- (iv) Let (D, *) be a group with 8 elements. Assume that D has a unique subgroup of order 2 and it has a unique abelian subgroup of order 4. Prove that D is an abelian group. In fact, you can prove that (D, *) is cyclic.

Proof: Let *F* be the unique abelian subgroup of *D* with 2 elements and let *M* be the unique abelian subgroup of *D* with 4 elements. Since *M* is abelian with 4 elements, we know that *M* has an abelian subgroup *K* with 2 elements. Since *K* is also an abelian subgroup of *D* with 2 elements, we conclude that K = F. Now let $a \in D \setminus M$ and let c = |a|. Hence by Lagrange Theorem, c = 1 or 2 or 4 or 8. We know that $\{a, a^2, ..., a^c = e\} = \langle a \rangle$ is an abelian (cyclic) subgroup of *D* with *c* elements. Since $a \in D \setminus M$ and $F \subset M$ are unique abelian subgroups of order 2 and 4 respectively, we conclude that $c \neq 2$ and $c \neq 4$. Clearly, $c \neq 1$. Hence c = 8. Thus $D = \langle a \rangle$.

(v) Let (D, *) be a group. Assume a * b = b * a for some $a, b \in D$. Given |a| = n, |b| = m, and gcd(n, m) = 1. Prove that |a * b| = nm. [Hint: Since gcd(n, m) = 1, from class notes we know that if $n \mid mc$ for some $c \in Z$, then $n \mid c$. Also you need to use a trivial fact from number theory that if gcd(n, m) = 1 and $n \mid c$ and $m \mid c$ for some $c \in Z$, then $nm \mid c$. Also $m \mid c$ for some $c \in Z$, then $n \mid c$.

Proof: Let k = |a * b|. Since a * b = b * a, $(a * b)^{nm} = (a^n)^m (b^m)^n = e * e = e$. Hence k|nm. Now $e = (a * b)^{km} = a^{km} * (b^m)^k = a^{km} * e = a^{km}$. Thus $n \mid km$. Since gcd(n,m) = 1, we conclude that $n \mid k$. Similarly, $e = (a * b)^{km} = (a^m)^k * b^{kn} = e * b^{kn} = b^{kn}$. Thus $m \mid kn$. Since gcd(n,m) = 1, we conclude that $m \mid K$. Since $n \mid k$ and $m \mid k$ and gcd(n,m) = 1, we conclude that $nm \mid k$. Since $k \mid nm$ and $nm \mid k$, we conclude that k = nm.

(vi) Let (D, *) be a group. Assume a * b = b * a for some $a, b \in D$. Given |a| = 6 and |b| = 14. Prove that (D, *) has a cyclic subgroup of order 42. [hint: Some how show that D has an element of order 7, then you need to use (V)]

Proof. We know $|b^2| = \frac{14}{gcd(2, 14)} = 7$. Since a * b = b * a, it is clear that $a * b^2 = b^2 * a$. Since gcd(6, 7) = 1, by part V $|a * b^2| = 42$. Hence $H = \langle a * b^2 \rangle$ is a cyclic subgroup of D with 42 elements.

(vii) Let D be an abelian group with pq elements where p, q are distinct prime numbers. Prove that D is cyclic.

Proof. Since D is abelian, we have a subgroup H of order p and a subgroup K of order q. Let $a \in H$ such that $a \neq e$. By Lagrange Theorem we conclude |a| = p. Similarly, if $b \in K$ and $b \neq e$, then |b| = q. Thus |a * b| = pq by part V. Hence $D = \langle a * b \rangle$

- (viii) Let D be a finite abelian group and H be a proper subgroup of D with 10 elements. Assume $a \in D \setminus H$ such that |a| = 3. Then
 - a. Show that a * H, a² * H, a³ * H are distinct left cosets of H[Hint: First note that a³ * H = e * H = H. We know a * H ∩ H = Ø. So show a² * H ∩ a * H = Ø and a² * H ∩ H = Ø].
 Proof: We show a² ∉ H and a² ∉ a * H. Assume that a² ∈ H. Since a³ = e, a * a² = e. Thus e ∈ a * H, impossible since a * H ∩ H = Ø. Assume a² ∈ a * H. Thus a² = a * h for some h ∈ H. Hence a = h, impossible. Thus H, a * H, a² * H are all distinct left cosets of H.
 - b. Show that $F = a * H \cup a^2 * H \cup a^3 * H$ is a subgroup of D with 30 elements. **Proof:** Note that $H = a^0 * H = e * H$ and hence $F = a^0 * H \cup a * H \cup a^2 * H$. Let $x, y \in F$. Since F is finite, we only need show $x * y \in F$. Hence $x = a^i * h, y = a^k * g$ for some $i, k, 0 \le i, k \le 2$ and some $h, g \in H$. Since |a| = 3 and D is abelian, $x * y = (a^i * h) * (a^k * g) = a^{(i+k)mod3} * (h * g)$. Since $0 \le (i+k)mod3 \le 2$ and $h * g \in H$, we are done.

- a. Find all distinct left cosets of H. Note there must be exactly 4 such left cosets
 : This is my present to you... just straight forward calculations
- b. Is $H \cup 5H$ a subgroup of U(16)? Is $H \cup 9H$ a subgroup of U(16)? explain
- Note $K = H \cup 5H = \{1, 7, 3, 5\}$. (5.3 = 15 \notin K, so no) and $L = H \cup 9H = \{1, 7, 9, 15\}$ (by Caley's Table L is a subgroup)

Submit your solution on Tuesday October 18, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

___, ID ____

MTH 320 Abstract Algebra Fall 2016, 1–2

HW IV, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) Let $\alpha = (1 \ 4 \ 5 \ 2)o(2 \ 6 \ 5) \in S_6$. Find $|\alpha|$

Typical question

(ii) Let $\beta \in S_7$ and $x = \beta o(2 \ 6 \ 3 \ 1) o \beta^{-1}$. Find |x|.

Typical question

(iii) Let $D = (Z_4, +) \times (Z_6, +)$. Give me a subgroup H of D such that there is no subgroup L_1 of Z_4 and there is no subgroup L_2 of Z_6 where $H = L_1 \times L_2$.

Solution: The element (2,3) in D is of order 2. Hence $H = \{(0,0), (2,3)\}$ is a subgroup of D but there is no subgroup L_1 of Z_4 and there is no subgroup L_2 of Z_6 where $H = L_1 \times L_2$.

(iv) Let $D = (S, *1) \times (F, *2)$ be a cyclic group (you may assume |S| > 1, |F| > 1). Let H be a subgroup of D. Prove that there exists a subgroup K of S and there exists a subgroup L of F such that $H = K \times L$. [Hint: You may use the fact that if gcd(n, m) = 1 and $i \mid nm$, then $i \mid n$ or $i \mid m$ or i = ab (a > 1 and b > 1) such that $a \mid n$ and $b \mid m$.) [OBSERVE that the group in part III is not cyclic, interesting!]

Solution: We know that F, S are cyclic and finite groups. Let n = |S| and m = |F|. Hence |D| = nm. Since D is cyclic, we know gcd(n,m) = 1. Let H be a subgroup of D and k = |H|. Since D is cyclic, we know that H is the only subgroup of D that has k element. Since $k \mid nm$ and gcd(n,m) = 1, we conclude that k = ab such that $a \mid n, b \mid m$, and gcd(a, b) = 1 (note it is possible that a = 1 or b = 1). Since $a \mid n, S$ has a unique subgroup L_1 of order a. Since $b \mid m, F$ has a unique subgroup L_2 of order b. Thus $L_1 \times L_2$ is the unique subgroup of D that has k elements. Hence $H = L_1 \times L_2$.

(v) Let $a \in S_n$ be a permutation (i.e $a = (a_1 \cdots a_k)$). Note that not every function in S_n is a permutation). Prove that $a \in A_n$ if and only if |a| is an odd number.

Solution: Since $a = (a_1 \ a_2 \cdots a_{k-1} \ a_k) = (a_1 \ a_k)o(a_1 \ a_{k-1})o \cdots o(a_1 \ a_2)$, (k-1)-2-cycles, we conclude that $a \in A_n$ iff (k-1) is even. Hence k must be an odd positive integer. Thus |a| = k is odd.

- (vi) We know that D_4 is a subgroup of S_4 and hence $L = D_4 \cap A_4$ is a subgroup of S_4 . Find L. Is $L \triangleleft A_4$? EXPLAIN Solution: Let $L = D_4 \cap A_4 = \{(1), (1 \ 3)(2 \ 4), (1 \ 3)(2 \ 4), (2 \ 3)(1 \ 4)\}$. Now if we view L as a subgroup of A_4 . Then $[A_4 : L] = 3$. Thus L has exactly 3 left cosets, say: L, aoL, and boL. Now do the calculation, show: aoL = Loa and boL = Lob. Thus we conclude that $L \triangleleft A_4$.
- (vii) Let D be a group with 15 elements. Assume $H \triangleleft D$ such that |H| = 3. Assume there exists $a \in S \setminus H$ such that $|a| \neq 5$. Prove that D is cyclic. [Hint: you may want to consider D/H !!]

Solution: We know D/H is a group with 5 element. Consider the natural group homomorphism from D onto D/H (given by $x \to x * H$). Let k = |a|, and m = |a * H| (note that m is the order of the element a * H in D/H). We know that m | k and m | 5 (since |D/H| = 5). Since $a \notin H, m \neq 1$. Hence m = 5. Thus 5 | k. Since 5 | k and k | 15 and $a^5 \neq 1$, we conclude that k = 15. Thud D is cyclic.

(viii) Let F be a nontrivial group-homomorphism from $(Z_6, +)$ into $(Z_8, +)$. Find Ker(F) and find Image(F) (i.e. Range(F)).

Solution: We know $Z_6/Ker(F) \approx Image(F)$ and Image(F) is a subgroup of Z_8 . Thus |Image(F)| is a factor of 8. Let a = |Image(F)|, $b = |Z_6/Ker(F)|$. Hence a = b. Since $b \mid 6$ and a = b and $a \mid 8$, we conclude that a = b = 2. Now Z_8 has exactly one subgroup of order 2. Thus $Image(F) = \{0, 4\}$. Since b = 2, we conclude |Ker(F)| = 3. Since Z_6 has exactly one subgroup of order 3, we conclude $Ker(F) = \{0, 2, 4\}$.

- (ix) Is the group $(Z_4, +)$ isomorphic to U(8)? EXPLAIN. Solution: No, Z_4 is cyclic but U(8) is not cyclic
- (x) Give me an example of a non-abelian group say D such that D has a normal subgroup H where D/H is abelian. Solution: Let $D = S_3$ and $H = A_3$.
- (xi) Give me an example of an abelian group say D that is not cyclic but D has a normal subgroup H where D/H is cyclic.

Solution: Let D = U(8) and $H = \{1, 7\}$.

(xii) Give me an example of a group say D that has a normal subgroup H such that there is an $a \in D$ where $|a| = \infty$ but the order of the element a * H in G/H is finite.

Solution: Let D = (Z, +), H = 5Z, and a = 1. Then $|1| = \infty$. Since $Z/5Z \approx Z_5$, |1 + 5Z| = 5.

(xiii) Give me an example of a group say D such that for each integer $n \ge 2$, there is an element $a \in D$ with |a| = n. (note that such D must be infinite)

Solution: Let D = (Q, +) and H = Z. Then $\frac{1}{n} + Z| = n$ in Q/Z.

(xiv) Let $n \ge 3$ and let $x \in S_n$. Prove that x^2 is always an even function.

Solution: Since $A_4 \triangleleft S_4$, we know that S_4/A_4 is a group with exactly 2 elements. Let $x \in S_4$. Then $(xoA_4)^2 = x^2oA = A$ in S_4/A_4 . Thus $x^2 \in A_4$.

DUE DATE : Nov 18, 2016, Thursday at 2pm

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com